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Parametrically forced surface wave with a nonmonotonic dispersion relation
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Surface wave patterns that arise in amechanicallydriven ferrofluid system under constant magnetic field are
investigated~1! to find out what kind of spatial patterns emerge when the system acquires a nonmonotonic
dispersion relation and~2! to compare its surface wave patterns with those produced in themagneticallydriven
system studied earlier. As the strength of the applied magnetic field increases, the initial subharmonic square
lattice formed by the Faraday instability first transforms to rolls, then becomes a rhomboid lattice. The rolls and
the rhomboid lattice are found to coexist for a finite range of parameter space forming patterns with mixed
domains. Possible underlying mechanisms for the observed rhomboid lattice is discussed. None of the diverse
superlattices observed in the magnetically driven ferrofluid system appears in the mechanically driven system
studied here.

DOI: 10.1103/PhysRevE.67.026218 PACS number~s!: 05.45.2a, 47.54.1r, 05.65.1b, 89.75.2k
ys
t

d
us
th
di
h

de

ui
u
n

-
m

ib
ie

ys
pa
at
s

bl
ng
ys
to
g
ite
in
er
s
il

ngle
ally

lat-
me
by

in-
day
be
the
h
ite

ns
as
can
ble
si-
-
lex
ys-
the

ave

ow

n
in
as

lar,
be

ne-

m
are

d in
l a
I. INTRODUCTION

Nonequilibrium patterns arising in spatially extended s
tems have been a subject of great scientific interest over
past years, and one of its new challenges is to understan
systems having several unstable modes simultaneo
@1–14#. In such a system, there can be situations in which
final steady state consists of a number of domains with
ferent wave numbers being separated by domain walls. T
possibility was shown earlier by Raitt and Riecke in a mo
study based on a set of Ginzburg-Landau equations@1,2#
and, subsequently, was proven by Mahr and Rehberg in
experiment, using a Faraday system employing ferrofl
@3,4#. The model system exhibited stable patterns with m
tiple domains having different wave vectors due to its no
monotonic dispersion relation~i.e., its neutral curve has mul
tiple minima!, and the surface waves in the ferrofluid syste
studied by Marh and Rehberg were actual examples exh
ing such a nonmonotonic dispersion relation. Both stud
were, however, limited to one dimension in space.

A quite interesting situation may arise when such a s
tem is extended to two-dimensional space: instead of
terns with multiple domains, a variety of complex superl
tices and quasicrystalline patterns can be produced by
called ‘‘resonant mode interactions’’ among the unsta
modes@6,8–12,14#. The first experimental system addressi
this phenomenon was ‘‘two-frequency forced Faraday s
tem’’ in which two different spatial modes were forced
emerge by various combinations of two sinusoidal forcin
@6,8#. Here, the use of two-frequency driving was to exc
two different spatiotemporal modes simultaneously bring
the system to a bicritical situation. Various intriguing sup
lattices and quasicrystal patterns were observed in such
tems. Recently, however, it was demonstrated that sim
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superlattice patterns can also be realized even in a si
frequency forced Faraday system, that is, a magnetic
driven ferrofluid system@10,11#. Various superlattices~in ad-
dition to the squares, hexagons, and rhombus! were revealed
in this system as well.

The underlying mechanisms of these ferrofluid super
tice patterns, however, were not so evident. Although so
of them were shown to arise due to a bicriticality formed
the harmonic hexagonal mode related to the Rosensweig
stability and the subharmonic square mode of the Fara
instability, many of the observed superlattices could not
explained by a simple three-wave interaction between
two basic modes@11#. They might have arisen throug
higher-order resonant mode interactions. Yet, this is qu
difficult to prove or disprove. Incidentally, these patter
might have emerged with a quite different mechanism:
discussed before, the surface waves in a driven ferrofluid
exhibit a nonmonotonic dispersion relation under a suita
condition; thus, multiple Fourier modes can be excited
multaneously even without the bicriticality. In this view
point, one major complication in understanding the comp
patterns observed in the magnetically driven ferrofluid s
tem is the fact that the dispersion relation changes as
applied magnetic field oscillates in time.

Here, we have examined two-dimensional surface w
patterns that arise in amechanicallydriven dish containing
ferrofluid under a constant magnetic field. Since we are n
employing a mechanical forcing scheme~instead of the mag-
netic forcing!, the complication of the oscillating dispersio
relation no longer exists. More explicitly, we are interested
knowing what would happen to the surface wave pattern
its dispersion relation becomes nonmonotonic, in particu
in two-dimensional space. Thus, our current system can
also viewed as a two-dimensional extension of the o
dimensional system studied earlier by Mahr and Rehberg@4#.

Surprisingly, in the mechanically driven ferrofluid syste
only simple patterns such as squares, rolls, and rhombus
observed. All those complex superlattice patterns observe
d-
©2003 The American Physical Society18-1
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the magnetically forced ferrofluid system are no longer se
The existence of the rhomboid pattern is, nevertheless, q
significant for its two distinct wave vectors. It is also foun
that the rhomboid pattern can also coexist with the roll p
tern for some finite range of the control parameter. Poss
underlying mechanisms of the rhomboid pattern are d
cussed with a set of two-dimensional amplitude equati
extended from the one-dimensional model developed ea
by Raitt and Riecke@2#.

II. EXPERIMENTAL SETUP

Our experimental setup is schematically depicted in F
1. It is composed of a teflon container containing ferroflu
a mechanical vibrator, a pair of Helmholtz coils, and an i
aging system. The cylindrical teflon container has a phys
dimension of depth 50 mm and inner diameter 140 mm
has an air-tight glass cover. The ferrofluid that we used
one-to-one mixture of two commercially available on
~EMG901 and EMG909, Ferrofluidics! @15,16#. The base of
the ferrofluid container~fluid depth 1.0 mm! is firmly at-
tached to a mechanical vibrator~PM vibration exciter 4808,
Brüel & Kjær! and the assembly is placed in the middle o
pair of two Helmholtz coils according to the schematic d
gram in Fig. 1. Sinusoidal signals are generated by a func
generator, amplified by a linear amplifier~power amplifier
2712, Brüel & Kjær!, then fed to the mechanical vibrator t
drive the container. The vertical acceleration of the contai
is monitored by a charge accelerometer~model 4393, Bru¨el
& Kjær! attached to the glass cover. The Helmholtz co
have an inner~outer! diameter of 200~280! mm, and the
separation between them is 120 mm. The stability of
magnetic field is monitored with a hall probe~Model 6010,
F. W. Bell Inc.! to confirm its spatial variation is within 3%
in the interested area.

The fluid surface is illuminated by three concentric ligh
emitting diode array rings~homebuilt diameter 160, 180, an
200 mm, respectively! for uniform illumination. They are
placed about 275 mm above the surface of ferrofluid. T
patterns are imaged at a spatial resolution of 5303512 pixels

FIG. 1. Mechanically driven ferrofluid system under a const
magnetic field.
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by using a charge-coupled device camera~Quantix, Photh-
metrics! with a frame grabber~Meteor2/DIG, Metrox!. The
exposure time is set to be 3 ms. The camera is located at
mm above the fluid surface. The flat surfaces either abov
below the level of surrounding fluid appear white, while t
nonflat surface that scatters the light away from the cam
appears black.

III. EXPERIMENTAL RESULT

A wide range of parameter space is explored only to fi
simple lattices such as the subharmonic squares, rolls, rh
bus, and mixed states~of rolls and rhombus!, as shown in
Fig. 2. Temporally subharmonic standing wave in the form
square lattice@see Fig. 2~a!# arises through the well-known
Faraday instability in the absence of magnetic field. The t
pairs of Fourier peaks crossing each other in a right angle
quite clear in the accompanying Fourier transform image

The square lattice becomes unstable as the strength o
applied magnetic field increases. First, it transforms to a
pattern@see Fig. 2~b!#, as one pair of the Fourier peaks d
cays and disappears. The transition to the roll pattern ta
place rather abruptly nearH50.88Hc , as shown in Fig. 3~a!.
The order parametera is the ratio P(kW18)/P(kW1), where

P(kW1) andP(kW18) are the spectral powers belonging tokW1 and

kW18 modes, respectively. Toward this transition, the fluctuat

of angle u between two base wave vectorskW1 and kW18 in-
creases significantly, although its mean value stays mor
less near 90°@see Fig. 3~b!#. The increasing angular fluctua
tion is due to the emergence of domains and defect lines

When the strength of the applied field is further increas
from the roll pattern, a long wavelength modulation kic
into the system—first, locally and randomly@see Fig. 2~c!#,
and eventually in a more organized fashion producing
rhomboid pattern of Fig. 2~d!. The corresponding Fourie
transform images exhibit two pairs of wave vectors (kW1 and
kW2) that are quite different in size@see Fig. 4~a!#.

The transition from the roll pattern to the rhomboid pa

t

FIG. 2. Standing wave patterns and their Fourier transform
ages acquired in a driven ferrofluid system:~a! squares,H50; ~b!
rolls, H50.88Hc ; ~c! mixed state of rolls and rhomboid pattern
H50.90Hc ; and ~d! rhomboid pattern,H50.94Hc . Here, Hc

5100.7 G is the critical field of the static Rosensweig instability f
the ferrofluid being used. The system is driven atf 570 Hz with an
accelerationG522.8 m/s2 unless otherwise mentioned. Each fram
is 31331 mm2.
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tern is quantified in Fig. 4~b! by the order parameterb
5P(k2)/P(k1), where P(k1) and P(k2) are the spectra
powers belonging tok1 andk2 modes, respectively. Accord
ing to Fig. 4~b!, the transition to the rhomboid pattern seem
continuous. But this interpretation may be misleading sin
the roll pattern does coexist with the rhomboid pattern in
significant range of parameter space@i.e., within the shaded
area in Fig. 4~a!#. In other words, the domains of rhombo
lattice grow gradually at the expense of shrinking domains
rolls; thus it is quite difficult to pinpoint the onset of th
transition. The values of two wave vectorskW1 andkW2 do not
change significantly over the whole parameter range oH
that we have studied and seem not to be related to each
@see Fig. 4~a!# ~i.e., k2 is definitely not a subharmonic mod
of k1).

Experimental investigation has also been carried out
other sets of driving frequencyf and accelerationG only to
find a similar sequence of transitions. For the wide range
parameter space that we have explored, the four classe
states presented in Fig. 2 are all that we have observed

IV. MODEL AMPLITUDE EQUATION

In the limit of no viscosity and infinite depth, the dispe
sion relation for the plane wave of wave numberk on the
surface of a ferrofluid is

FIG. 3. Transition of square lattice to roll pattern:~a! a

5P(kW18)/P(kW1) vs H and ~b! u vs H; u is measured in the rea
space.
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r~1/mo11/m!
Mo

2k2, ~1!

where g is the gravitational acceleration,s is the surface
tension,r is the density of the fluid,m is the permeability,
andMo is the magnetization of the fluid@15#. For Mo

2.Mc
2

5A3gsr(1/mo11/m), the dispersion relation becomes no
monotonic.

In recent years, Raitt and Riecke@2# have developed an
amplitude equation suitable for systems having a nonmo
tonic dispersion relation. They have proposed the follow
one-dimensional model equations:

] tA1v]xA5d]x
2A1 f ]x

3A1aA1bB* 2cuAu2A2c8uBu2A,

] tB2v]xB5d]x
2B2 f ]x

3B1aB1bA* 2cuBu2B2c8uAu2B.
~2!

Here, A(x,t) @B(x,t)# is the amplitude of the right~left!
traveling plane wave. All the coefficients are complex exc
b, which is related to the magnitude of the parametric dr
ing. The most significant change from the conventional a

FIG. 4. Transition of rolls to rhombus:~a! k1 andk2 vs H and
~b! b5P(k2)/P(k1) vs H. The values ofk1 andk2 are obtained by
identifying two local maximum peaks along the radial function, th
is, obtained by azimuthually averaging the Fourier image.P(k1)
andP(k2) are the average spectral powers belonging tok1 andk2,
respectively. The rolls coexist with the rhomboid pattern for t
shaded area.
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plitude equations is that second- and third-order spatial
rivative terms are newly adopted. Raitt and Riecke argue
these two terms should be kept as long asv(k) has quadratic
and cubic terms.

Linear stability analysis of the one-dimensional stand
wave arising in the model system is carried out, and
neutral stability curve is found to be a nonmonotonic fun
tion:

b25ua2 ivk2dk22 i f k3u2. ~3!

Direct numerical simulation studies of Eq.~2! also have con-
firmed that multiple~two or three! bands ofk can be simul-
taneously unstable. In other words, the existence of a n
monotonicv(k) enables standing waves with multiple wa
numbers.

In order to gain some insight into the observed patte
and their transitions in the experiment, we have extended
~2! for the two-dimensional space, according to the stand
procedure given in@17#. The extended set of equations is

] tA1vS ]x2
i

2ko
]y

2DA5dS ]x2
i

2ko
]y

2D 2

A

1 f S ]x2
i

2ko
]y

2D 3

A1aA1bB*

2cuAu2A2c8uBu2A,

] tB1vS 2]x2
i

2ko
]y

2DB5dS 2]x2
i

2ko
]y

2D 2

B

1 f S 2]x2
i

2ko
]y

2D 3

B1aB

1bA* 2cuBu2B2c8uAu2B,

~4!

where ko is the wave number associated with the prima
instability. With a linear stability analysis, we find the fo
lowing neutral stabilitysurface:

b25ua2 ivk12dk1
2 2 i f k1

3 u2, ~5!

where k15kx1ky
2/(2ko). This equation is basically the

same as the neutral stability curve in one dimension@Eq. ~3!#
except thatk is replaced byk1 .

A typical neutral stability surface is given in Fig. 5. Th
two unstable bands of the one-dimensional curve@Eq. ~3!#
are now replaced by two nearly parallel ‘‘troughs.’’ In th
particular example, as one increasesb the first modes to be
excited are those in the band aroundkx;0.4 (b;0.53). The
second band locates aroundkx;20.8 with b;0.71. We
note that along both troughs the minimum values ofb do not
change significantly. This suggests that a wide range oky
modes can be present in the final pattern. In other words,
may expect that the orientation of the standing wave~as de-
termined by the ratio ofky to ko1kx) can be varied without
changing its stability significantly.
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In fact, in the experiment we observe that the regular r
pattern@Fig. 2~b!# becomes progressively less regular@Fig.
2~c!# until it stabilizes to a rhomboid state@Fig. 2~d!#, as the
parameterH increases. From this viewpoint, the rhombo
lattice of Fig. 2~d! can be considered as ‘‘deformed rolls
This interpretation is similar to that provided by Ouyan
et al. for that the rhomboid lattice in their study is viewed
a deformed hexagonal lattice@18#.

The same neutral stability surface can, however, sugge
different mechanism for the rhomboid lattice of Fig. 2~d!—
unstablek modes from different stability bands are excited
the same time but in different directions. We note that
wave number in one direction~alongkx axis! is significantly
larger than that in the other direction~alongky axis!, and it is
possible that each mode belongs to a different stability ba
Experimental verification of the exact underlying mechani
of the rhomboid pattern would, however, require a bet
spatial resolution in the Fourier space. Our current exp
mental system is not large enough to accommodate a l
number ofk2 modes.

V. CONCLUSION

We have shown that under a suitable condition the surf
wave of a ferrofluid can have a nonmonotonic dispers
relation producing two unstable modes simultaneously. Tw
dimensional patterns with coexisting domains of differe
wave numbers are observed, as in the relevant o
dimensional studies conducted earlier@2,4#. So far, the paper
by Residoriet al. @5# is the only other experimental stud
that has demonstrated the existence of coexisting dom
~there, in particular, hexagons and stripes! in two-
dimensional space. Unfortunately, however, the precise
gin of the domain patterns is not yet established. Indeed
one has yet to discuss rigorously what are the possible t
dimensional domain structures for a system with two or m
spatial modes gone unstable simultaneously.

On the other hand, there is no reason why not the sa
two-dimensional system produces regular lattice patterns
stead of domains. With two distinct unstable wave numb
k1 and k2 present, one can naturally expect either a zigz
state@1,19# or a rhomboid pattern@7# to arise. Theoretically,
the stability of zigzag structure has been studied in so

FIG. 5. Neutral stability surface of Eq.~4! with a520.5
10.5i ,d50.1,v5110.2i , f 523. Two parallel ‘‘troughs’’ of insta-
bility bands are observed.
8-4
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detail, but very little for rhomboid pattern.
It is also important to note that none of the diverse sup

lattice patterns observed earlier in the magnetically driv
ferrofluid system@11# does not appear in the current syste
employing a mechanical forcing scheme. In other words,
two independent Fourier modes generated by the nonm
tonic dispersion do not produce any resonant modes. Su
quently, we can speculate that all those resonant superla
patterns observed in the magnetically forced system
arisen by some resonant interactions between the harm
hexagon of the Rosensweig instability and the subharmo
square of the Faraday instability and had not originated fr
the nonlinear dispersion property of the magnetic fluid. It
however, still uncertain what had the oscillating dispers
relation caused to the patterns in the magnetically dri
system.
ter

an
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Finally, we also like to indicate that the issues we discu
here can be extended to traveling waves. Theoretically, v
little is known about domain structures of traveling wav
and they are of great scientific interest currently. Incidenta
a recent experimental study on excitable waves in
Belousov-Zhabotinsky reaction-diffusion system reports
teresting traveling wave states with bunching wave fro
@20#. They also originate from a nonlinear dispersion re
tion.
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