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Parametrically forced surface wave with a nonmonotonic dispersion relation
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Surface wave patterns that arise imachanicallydriven ferrofluid system under constant magnetic field are
investigated(1) to find out what kind of spatial patterns emerge when the system acquires a nonmonotonic
dispersion relation an(?) to compare its surface wave patterns with those produced imégmeticallydriven
system studied earlier. As the strength of the applied magnetic field increases, the initial subharmonic square
lattice formed by the Faraday instability first transforms to rolls, then becomes a rhomboid lattice. The rolls and
the rhomboid lattice are found to coexist for a finite range of parameter space forming patterns with mixed
domains. Possible underlying mechanisms for the observed rhomboid lattice is discussed. None of the diverse
superlattices observed in the magnetically driven ferrofluid system appears in the mechanically driven system
studied here.
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[. INTRODUCTION superlattice patterns can also be realized even in a single
frequency forced Faraday system, that is, a magnetically

Nonequilibrium patterns arising in spatially extended sys-driven ferrofluid systenp10,11]. Various superlatticegn ad-
tems have been a subject of great scientific interest over thdition to the squares, hexagons, and rhombere revealed
past years, and one of its new challenges is to understand tlie this system as well.
systems having several unstable modes simultaneously The underlying mechanisms of these ferrofluid superlat-
[1-14]. In such a system, there can be situations in which theice patterns, however, were not so evident. Although some
final steady state consists of a number of domains with difof them were shown to arise due to a bicriticality formed by
ferent wave numbers being separated by domain walls. Thithe harmonic hexagonal mode related to the Rosensweig in-
possibility was shown earlier by Raitt and Riecke in a modelstability and the subharmonic square mode of the Faraday
study based on a set of Ginzburg-Landau equatidng] instability, many of the observed superlattices could not be
and, subsequently, was proven by Mahr and Rehberg in agxplained by a simple three-wave interaction between the
experiment, using a Faraday system employing ferrofluidwo basic modeg11]. They might have arisen through
[3,4]. The model system exhibited stable patterns with mul-higher-order resonant mode interactions. Yet, this is quite
tiple domains having different wave vectors due to its non-difficult to prove or disprove. Incidentally, these patterns
monotonic dispersion relatiofne., its neutral curve has mul- might have emerged with a quite different mechanism: as
tiple minima), and the surface waves in the ferrofluid systemdiscussed before, the surface waves in a driven ferrofluid can
studied by Marh and Rehberg were actual examples exhibitexhibit a nonmonotonic dispersion relation under a suitable
ing such a nonmonotonic dispersion relation. Both studiegondition; thus, multiple Fourier modes can be excited si-
were, however, limited to one dimension in space. multaneously even without the bicriticality. In this view-

A quite interesting situation may arise when such a syspoint, one major complication in understanding the complex
tem is extended to two-dimensional space: instead of pafpatterns observed in the magnetically driven ferrofluid sys-
terns with multiple domains, a variety of complex superlat-tem is the fact that the dispersion relation changes as the
tices and quasicrystalline patterns can be produced by sapplied magnetic field oscillates in time.
called “resonant mode interactions” among the unstable Here, we have examined two-dimensional surface wave
modeq 6,8—12,14. The first experimental system addressingpatterns that arise in mechanicallydriven dish containing
this phenomenon was “two-frequency forced Faraday sysferrofluid under a constant magnetic field. Since we are now
tem” in which two different spatial modes were forced to employing a mechanical forcing scheftiestead of the mag-
emerge by various combinations of two sinusoidal forcingsnetic forcing, the complication of the oscillating dispersion
[6,8]. Here, the use of two-frequency driving was to exciterelation no longer exists. More explicitly, we are interested in
two different spatiotemporal modes simultaneously bringingknowing what would happen to the surface wave pattern as
the system to a bicritical situation. Various intriguing super-its dispersion relation becomes nonmonotonic, in particular,
lattices and quasicrystal patterns were observed in such sy two-dimensional space. Thus, our current system can be
tems. Recently, however, it was demonstrated that similaalso viewed as a two-dimensional extension of the one-

dimensional system studied earlier by Mahr and Rehp&lrg
Surprisingly, in the mechanically driven ferrofluid system
* Author to whom correspondence should be addressed. Email adnly simple patterns such as squares, rolls, and rhombus are
dress: kyoung@nld.korea.ac.kr observed. All those complex superlattice patterns observed in
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Vibration) Power | _ Function H=0.9H.; and (d) rhomboid pattern,H=0.94H.. Here, H,
exciter amplifier generator =100.7 G is the critical field of the static Rosensweig instability for

the ferrofluid being used. The system is driverf &t70 Hz with an
FIG. 1. Mechanically driven ferrofluid system under a constantacceleratiod’ =22.8 m/$ unless otherwise mentioned. Each frame
magnetic field. is 31x 31 mn.

the magnetically forced ferrofluid system are no longer seeryy ysing a charge-coupled device camé@aiantix, Photh-
The existence of the rhomboid pattern is, nevertheless, quitgetricy with a frame grabbetMeteor2/DIG, Metroy. The
significant for its two distinct wave vectors. It is also found exposure time is set to be 3 ms. The camera is located at 560
that the rhomboid pattern can also coexist with the roll patym above the fluid surface. The flat surfaces either above or
tern for some finite range of the control parameter. Possiblge|ow the level of surrounding fluid appear white, while the

underlying mechanisms of the rhomboid pattern are disnonflat surface that scatters the light away from the camera
cussed with a set of two-dimensional amplitude equationgppears black.

extended from the one-dimensional model developed earlier
by Raitt and Rieckg2].
I1l. EXPERIMENTAL RESULT

Il. EXPERIMENTAL SETUP A wide range of parameter space is explored only to find
simple lattices such as the subharmonic squares, rolls, rhom-

Our experimental setup is schematically depicted in Figbus and mixed state®f rolls and rhombus as shown in

1. It is composed of a teflon container containing ferrofluid, . : . .
a mechanical vibrator, a pair of Helmholtz coils, and an im-F19- 2. Tem_porally sgbharmon_lc standing wave in the form of
aging system. The cylindrical teflon container has a physicafduare latticésee Fig. 2a)] arises through the well-known

dimension of depth 50 mm and inner diameter 140 mm amlj?a_raday instgbility in the ab;ence of magngtic ﬁ.EId' The two
has an air-tight glass cover. The ferrofluid that we used is &2irs of Fourier peaks crossing each other in a right angle are

one-to-one mixture of two commercially available onesduite clear in the accompanying Fourier transform image.
(EMG901 and EMG909, Ferrofluidiz§15,16|. The base of The square lattice becomes unstable as the strength of the
the ferrofluid containel(fluid depth 1.0 r’nm is firmly at- applied magnetic field increases. First, it transforms to a roll
tached to a mechanical vibrat®M vibration exciter 4808, Pattern[see Fig. 20)], as one pair of the Fourier peaks de-
Brilel & Kjeer) and the assembly is placed in the middle of acays and disappears. The transition to the ro!l pa}ttern takes
pair of two Helmholtz coils according to the schematic dia-Place rather abruptly neaf=0.88H., as ihowneln Fig. @).

gram in Fig. 1. Sinusoidal signals are generated by a functiodhe order parametew is the ratio P(k;)/P(k;), where
generator, amplified by a linear amplifigpower amplifier ~ P(k;) andP(k;) are the spectral powers belongingdoand
2712, Briel & Kijeer), then fed to the mechanical vibrator to ¢+ odes, respectively. Toward this transition, the fluctuation
drive the container. The vertical acceleration of the container

is monitored by a charge accelerometerodel 4393, Brel of angIeQ b(.et_ween two base wave vectdkg and k; in-
& Kijeer) attached to the glass cover. The Helmholtz coilscreases significantly, although its mean value stays more or

have an innerouten diameter of 200(280) mm, and the I_ess hear 90fsee Fig. &)]. The increasing angular flugtua-
separation between them is 120 mm. The stability of thd!On iS due to the emergence of domains and defect lines.
magnetic field is monitored with a hall prollodel 6010, When the strength of the applied field is further mcregsed
F. W. Bell Inc) to confirm its spatial variation is within 3% from the roll pattern, a long wavelength modulaﬂon kicks
in the interested area. into the system'—flrst, locally an(_:i randon{lyee Fig. 2(:)],
The fluid surface is illuminated by three concentric light- 2Nd éventually in .a more organized fashion producing the
emitting diode array ringéhomebuilt diameter 160, 180, and 'homboid pattern of Fig. @). The corresponding Fourier
200 mm, respectivelyfor uniform illumination. They are transform images exhibit two pairs of wave vectoks and
placed about 275 mm above the surface of ferrofluid. Thek,) that are quite different in sizksee Fig. 4a)].
patterns are imaged at a spatial resolution 0’6302 pixels The transition from the roll pattern to the rhomboid pat-
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FIG. 4. Transition of rolls to rhombuga) k; andk, vs H and
(b) B=P(k,)/P(k;) vs H. The values ok; andk, are obtained by
identifying two local maximum peaks along the radial function, that
is, obtained by azimuthually averaging the Fourier imagék;)
andP(k,) are the average spectral powers belonging;tandk,,
respectively. The rolls coexist with the rhomboid pattern for the
shaded area.

FIG. 3. Transition of square lattice to roll patterfa) «

=P(k})/P(k;) vs H and (b) 6 vs H; 6 is measured in the real
space.

tern is quantified in Fig. @) by the order parameteB
=P(ky)/P(ky), where P(k;) and P(k,) are the spectral
powers belonging té&; andk, modes, respectively. Accord-
ing to Fig. 4b), the transition to the rhomboid pattern seems
continuous. But this interpretation may be misleading since
the roll pattern does coexist with the rhomboid pattern in a
significant range of parameter spdce., within the shaded
area in Fig. 4a)]. In other words, the domains of rhomboid Where g is the gravitational acceleratiow; is the surface
lattice grow gradually at the expense of shrinking domains ofension,p is the density of the fluidyu is the permeability,
rolls; thus it is quite difficult to pinpoint the onset of the andM, is the magnetization of the fluidL5]. For M3>Mg
transition. The values of two wave vectdes andk, do not  =+v3gop(l/u,+1/u), the dispersion relation becomes non-
change significantly over the whole parameter rangddof Mmonotonic.
that we have studied and seem not to be related to each other In recent years, Raitt and Rieck2] have developed an
[see Fig. 4a)] (i.e., k, is definitely not a subharmonic mode amplitude equation suitable for systems having a nonmono-
of k). tonic dispersion relation. They have proposed the following
Experimental investigation has also been carried out fopne-dimensional model equations:
other sets of driving frequendyand acceleratioh’ only to ) 3 . ) o2
find a similar sequence of transitions. For the wide range of?tA+vdxA=dd A+ Ta,A+aA+bB* —c|A|*A—c’|B[?A,
parameter space that we have explored, the four classes of
states presented in Fig. 2 are all that we have observed. ¢B—vdB=dd;B—fiB+aB+bA* —C|B|ZB—C'|A|2?2-

w2(K)=gk+ %k3— M2, (D)

p(Upo+ 1)

V. MODEL AMPLITUDE EQUATION Here, A(x,t) [B(x,t)] is the amplitude of the rightleft)

In the limit of no viscosity and infinite depth, the disper- traveling plane wave. All the coefficients are complex except
sion relation for the plane wave of wave numbeon the b, which is related to the magnitude of the parametric driv-
surface of a ferrofluid is ing. The most significant change from the conventional am-
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plitude equations is that second- and third-order spatial de-
rivative terms are newly adopted. Raitt and Riecke argue that

these two terms should be kept as longs§k) has quadratic
and cubic terms.

Linear stability analysis of the one-dimensional standing
wave arising in the model system is carried out, and the

neutral stability curve is found to be a nonmonotonic func-
tion:
b?=|a—ivk—dk?>—ifk3|2. (3)

Direct numerical simulation studies of E@®) also have con-
firmed that multiple(two or threg bands ofk can be simul-

taneously unstable. In other words, the existence of a non-

monotonicw (k) enables standing waves with multiple wave
numbers.

In order to gain some insight into the observed patterns

and their transitions in the experiment, we have extended E
(2) for the two-dimensional space, according to the standar
procedure given ihl17]. The extended set of equations is

2
|
2
*
+f| ay— 2k )A+aA+bB
—c|A|?A—c’|B|?A,
H 2
dB+v| = dx= 5 (92)8 d| == 5 (92> B

3

2| B+aB

i
+f( —dy— 2—k0(9y
+bA* —c|B|?B—c'|A|?B,

4

wherek, is the wave number associated with the primary

instability. With a linear stability analysis, we find the fol-
lowing neutral stabilitysurface

b?=|a—ivk, —dk: —ifk3|?, (5)
where k. =ke+k%/(2k,). This equation is basically the
same as the neutral stability curve in one dimeng§im (3)]
except thak is replaced by, .

A typical neutral stability surface is given in Fig. 5. The
two unstable bands of the one-dimensional cuiizg. (3)]
are now replaced by two nearly parallel “troughs.” In this
particular example, as one increasethe first modes to be
excited are those in the band arougd-0.4 (b~0.53). The
second band locates aroumg~ —0.8 with b~0.71. We
note that along both troughs the minimum value$ d not
change significantly. This suggests that a wide rangg,of
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FIG. 5. Neutral stability surface of Eq4) with a=—0.5
+0.5,d=0.1p=1+0.2,f=—3. Two parallel “troughs” of insta-
bility bands are observed.

In fact, in the experiment we observe that the regular roll
attern[Fig. 2(b)] becomes progressively less regulkig.
(c)] until it stabilizes to a rhomboid staf€&ig. 2(d)], as the
parameterH increases. From this viewpoint, the rhomboid
lattice of Fig. Zd) can be considered as “deformed rolls.”
This interpretation is similar to that provided by Ouyang
et al. for that the rhomboid lattice in their study is viewed as
a deformed hexagonal latti¢&8].

The same neutral stability surface can, however, suggest a
different mechanism for the rhomboid lattice of Figdp—
unstablek modes from different stability bands are excited at
the same time but in different directions. We note that the
wave number in one directiof@longk, axis) is significantly
larger than that in the other directi¢alongk, axis), and it is
possible that each mode belongs to a different stability band.
Experimental verification of the exact underlying mechanism
of the rhomboid pattern would, however, require a better
spatial resolution in the Fourier space. Our current experi-
mental system is not large enough to accommodate a large
number ofk, modes.

V. CONCLUSION

We have shown that under a suitable condition the surface
wave of a ferrofluid can have a nonmonotonic dispersion
relation producing two unstable modes simultaneously. Two-
dimensional patterns with coexisting domains of different
wave numbers are observed, as in the relevant one-
dimensional studies conducted ear(i2f4]. So far, the paper
by Residoriet al. [5] is the only other experimental study
that has demonstrated the existence of coexisting domains
(there, in particular, hexagons and stripes; two-
dimensional space. Unfortunately, however, the precise ori-
gin of the domain patterns is not yet established. Indeed, no
one has yet to discuss rigorously what are the possible two-
dimensional domain structures for a system with two or more
spatial modes gone unstable simultaneously.

On the other hand, there is no reason why not the same
two-dimensional system produces regular lattice patterns, in-

modes can be present in the final pattern. In other words, orstead of domains. With two distinct unstable wave numbers

may expect that the orientation of the standing wéagde-
termined by the ratio ok, to k,+k,) can be varied without
changing its stability significantly.

k, andk, present, one can naturally expect either a zigzag
state[1,19] or a rhomboid patterp7] to arise. Theoretically,
the stability of zigzag structure has been studied in some
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detail, but very little for rhomboid pattern. Finally, we also like to indicate that the issues we discuss
It is also important to note that none of the diverse superhere can be extended to traveling waves. Theoretically, very
lattice patterns observed earlier in the magnetically drivenittle is known about domain structures of traveling waves
ferrofluid systen{11] does not appear in the current systemand they are of great scientific interest currently. Incidentally,
employing a mechanical forcing scheme. In other words, the, recent experimental study on excitable waves in a
two independent Fourier modes generated by the nonmon@e|ousov-zhabotinsky reaction-diffusion system reports in-
tonic dispersion do not produce any resonant modes. Subsgsresting traveling wave states with bunching wave fronts

quently, we can speculate that all those resonant superlatti¢q) They also originate from a nonlinear dispersion rela-
patterns observed in the magnetically forced system hag,,

arisen by some resonant interactions between the harmonic
hexagon of the Rosensweig instability and the subharmonic
square of the Faraday instability and had not originated from
the nonlinear dispersion property of the magnetic fluid. It is,
however, still uncertain what had the oscillating dispersion
relation caused to the patterns in the magnetically driven This work was supported by Creative Research Initiatives
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